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Deformation and oscillations of a single gas bubble rising in a narrow
vertical tube
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Abstract

A single gas bubble rising in a narrow vertical tube is investigated via a numerical model on a 3-D axisymmetric computational domain. The
transient governing equations are solved by a finite volume scheme with a two-step projection method. The interface between the liquid and gas
phase is tracked by a coupled level set and volume-of-fluid (CLSVOF) method. A surface tension modeling method, which preserves the jump
discontinuity of pressure at the interface, is employed. The velocity distribution around the bubble and the bubble rise velocity obtained in the
numerical simulation are in excellent agreement with experimental measurements. Special attention is paid to the bubble oscillations during the
initial stage of ascent. It has been found that the bubble bottom undergoes severe oscillations while the nose maintains a stable shape. A parametric
study is performed to identify the factors controlling the oscillations at the bubble bottom.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Bubble-driven flows appear in various natural and industrial
processes with a wide range of applications such as oil trans-
portation, steam generation, cooling systems of nuclear power
plants, propagation of sound in the ocean, cloud cavitations, etc.
Numerous experimental and theoretical studies have been car-
ried out during the past fifty years [1–8]. Due to the complex
two-phase flow patterns associated with bubble behavior, some
issues are still unresolved. In recent years, bubble oscillations
have attracted much attention as a result of the development of
advanced measurement techniques and tools that provide more
detailed information on the dynamics of bubble motion. Bubble
oscillations are complicated phenomena that include the bubble
rising trajectory and shape instabilities as well as the associated
velocity and pressure fluctuations. These oscillations further
complicate the bubble flow problems and cast doubt on the ac-
curacy of the terminal velocity and the existence of a “steady
state”.
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Many experimental studies have been reported on the bubble
trajectory and shape oscillations [9–12]. Most of the experi-
ments were conducted in an infinite fluid environment where
the wall effects of the containers were negligible. Although
bubble oscillations in a confined tube or pipe have practical
significance, studies on the subject are relatively scarce. If a
large bubble is confined in a narrow tube with a comparable
cross-sectional diameter, the bubble will rise along the tube
centerline, and path instabilities that might occur in unbounded
domain will not appear. The problem seems to become some-
what simpler without trajectory oscillations and is therefore
often neglected by researchers. Typically, for a large bubble in
a narrow tube, a ‘slug flow’ will develop. This is characterized
by a rounded cap front with a long main body surrounded by a
falling annular liquid film [2].

Most studies on slug flows have focused on terminal veloc-
ity, steady shape and drag force. In a recent study [3], a uni-
versal correlation for the rise velocity of a long gas bubble in
stagnant fluids contained in a vertical tube was obtained based
on data collected from published literature. The velocity field
in the liquid around the bubble has been investigated using
Particle Image Velocimetry (PIV) by some researchers [4–6].
However, due to experimental difficulties, velocity profiles in
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Nomenclature

As arbitrary amplitude
D tube diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mm
Eo Eötvös number
F VOF function
f frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hz
g gravitational acceleration . . . . . . . . . . . . . . . . . m s−2

h grid spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mm
L tube length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mm
Mo Morton number
Js Bessel function
k wave number
n normal vector
P pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
r radial coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . mm
R bubble radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mm
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ms
u velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

z axial coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . mm

Greek letters

φ level set function
Φ velocity potential
ω angular frequency
ε arbitrary phase angle
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

σ surface tension coefficient . . . . . . . . . . . . . . . kg s−2

μ dynamic viscosity . . . . . . . . . . . . . . . . . . kg m−1 s−1

κ local curvature at interface

Subscripts
g gas
l liquid
v vapor
T terminal velocity

(All other symbols are defined where they appear.)
the gas phase were seldom available. In the case of numerical
simulations, the momentum equations and hence flow calcula-
tions were often ignored in the gas phase due to the large density
ratio between liquid and gas [7]. Polonsky et al. [8] reported the
oscillatory motion of the bubble bottom for a long gas bubble
rising in a vertical tube while the nose of the bubble retained
its shape. The amplitude of oscillations was found to increase
with the bubble length, while the frequency remained constant.
van Hout et al. [4] investigated the velocity field induced by
a Taylor bubble rising in stagnant liquid. Velocity fluctuations
were noticeable fifty tube diameters away from the wake of the
bubble. It should be noted that the experimental measurements
were performed at steady state while the transient effect was
not accounted for in the last two studies.

In the present study, the motion of a single gas bubble, with
a diameter comparable to that of the tube, rising through a stag-
nant liquid is investigated via a numerical method. The transient
governing equations are solved by a finite volume scheme with
a two-step projection method. The interface between the liquid
and gas phase is tracked by a coupled level set and volume-
of-fluid (CLSVOF) method. A new surface tension modeling
method, termed the pressure boundary method (PBM), is em-
ployed. The objective of the present work is to investigate the
bubble oscillations during the initial acceleration stage. The ve-
locity field and pressure distribution within the bubble and in
the surrounding liquid are also examined.

2. Numerical formulations

2.1. Governing equations

For two-phase flows, the whole flow domain can be de-
scribed by a single set of momentum and continuity equations
within the “one-fluid” formulation approach, where different
fluid properties are considered in each individual phase. Proper
stress conditions at the interface between different phases can
be enforced implicitly. Fluid properties, such as density and vis-
cosity are assumed to be constant in the liquid and gas phase.
The governing equations can be written as:

∇ · u = 0 (1)
∂u

∂t
+ u · ∇u = − 1

ρ
∇P + 1

ρ
∇ · μ[

(∇u) + (∇u)T
] + g (2)

where u is the velocity, ρ the effective density, P the pressure,
μ the effective dynamic viscosity and g the gravitational accel-
eration. A new surface tension force model is adopted where
the surface tension effect is treated as a pressure jump condi-
tion at the interface [13]. The model has been shown to be an
accurate and efficient method with spurious currents at the in-
terface greatly suppressed. The effective density and viscosity
at each grid point are given by:

ρ = ρg(1 − F) + ρlF (3)

μ = μg(1 − F) + μlF (4)

where F is the VOF function which is zero in the gas phase
and one in the liquid. Subscripts g and l denote gas and liquid
respectively.

Eq. (2) is approximated in finite-difference form as:

un+1 − un

δt
= −un · ∇un + gn − 1

ρn
∇P n+1

+ 1

ρn
∇ · μ[

(∇un) + (∇un)T
]

(5)

A two-step projection algorithm is used where Eq. (5) is de-
composed into the following two equations:

u∗ − un

δt
= −un · ∇un + gn − 1

ρn
∇P1

+ 1
n
∇ · μ[

(∇un) + (∇un)T
]

(6)

ρ
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and

u∗ − un+1

δt
= − 1

ρn
∇P n+1

2 (7)

where u∗ represents an intermediate velocity. Pressure P in
Eq. (5) is split into two terms, P1 and P2. Pressure P1, ac-
counting for the surface tension effect, is obtained by solving
the following pressure equation:

∇ ·
[

1

ρn
∇P1

]
= 0 (8)

with the jump conditions induced by the surface tension effect
serving as the boundary condition.

In the first step, an intermediate velocity field, u∗, is com-
puted from Eq. (6), which accounts for incremental changes
resulting from viscosity, advection, gravity, and surface tension
effect. In the second step, the velocity field, un+1, is projected
into a zero-divergence vector field, resulting in a single Poisson
equation for the pressure P2 given by:

∇ ·
[

1

ρn
∇P n+1

2

]
= ∇ · u∗

δt
(9)

Pressure P2, resulting from flow motion, ensures mass conser-
vation.

2.2. CLSVOF method

The main complexity of the numerical simulation is the dy-
namics of a rapidly moving interface, the location of which is
unknown and is needed as part of the solution. In recent years,
a number of methods have been developed for modeling free
surface flows [14], among which the volume-of-fluid (VOF)
method and the level set (LS) method are two Eulerian-based
methods that have been widely used. One of the advantages of-
fered by these methods is the ease in which flow problems with
large topological changes and interface deformations can be
handled. These include liquid ligament breakup, bubble merg-
ing and bursting, and droplet elongation and breakup. The VOF
method has the desirable property of mass conservation. How-
ever, it lacks accuracy on the normal and curvature calculations
due to the discontinuous spatial derivatives of the VOF func-
tion near the interface. This may lead to convergence problems
especially in the surface tension force dominated problems. As
for the LS method, the normal and curvature can be calculated
accurately from the continuous and smooth distance functions.
However, one serious drawback of this method is the frequent
violation of the mass conservation. To overcome such weak-
nesses of the LS and VOF methods, a coupled level set and
volume-of-fluid (CLSVOF) method has recently been reported
[15,16].

The LS function, φ, is defined as a signed distance function
given by:

φ(x, t) =
{

> 0, outside the interface
= 0, at the interface
< 0, inside the interface

(10)

i.e. positive in the liquid, negative in the air, and zero at the
interface. The VOF function, F, is defined as the liquid volume
fraction in a cell with its value between zero and one in a surface
cell and at zero and one in air and liquid respectively, i.e.

F(x, t) =
{1, in the liquid

0 < F < 1, at the interface
0, external to liquid

(11)

The LS function and the VOF function are advanced by the
following equations, respectively:

Dφ

Dt
= ∂φ

∂t
+ (u · ∇)φ = 0 (12)

DF

Dt
= ∂F

∂t
+ (u · ∇)F = 0 (13)

Since the VOF function is not smoothly distributed at the
interface, an interface reconstruction procedure is required to
evaluate the VOF flux across an interfacial cell. In this study,
the interface is reconstructed via a piecewise linear interface
construction (PLIC) scheme, and the interface normal is calcu-
lated from the LS function as:

n = ∇φ

|∇φ| (14)

It should be noted that the LS function would fail to be
a distance function after being advanced by Eq. (12), and a
re-initialization process is needed for its return to a distance
function. This is achieved by obtaining a steady-state solution
of the following re-initialization equation:

∂φ

∂t
= φ0√

φ2
0 + h2

(
1 − |∇φ|) (15)

where φ0 is the LS function at the previous time step, t the ar-
tificial time, and h the grid spacing. Finally, in order to achieve
mass conservation, the LS functions have to be re-distanced
[15] prior to being used. The curvature, computed directly from
the LS function, is given by:

κ = ∇ ·
( ∇φ

|∇φ|
)

(16)

Details of CLSVOF scheme employed in the present study can
be found in [17].

3. Results and discussion

Initially, a spherical air bubble with a diameter of 20 mm
is stationed near the bottom of a vertical tube (D = 25 mm and
L = 150 mm) containing quiescent water. The no-slip boundary
condition is imposed at the solid wall with an open bound-
ary condition applied at the top of the tube. The calculations
are carried out on an axisymmetric computational domain. Un-
less otherwise stated, air and water with the following con-
stant properties are used in the simulations: ρl = 1000 kg m−3,
ρg = 1.226 kg m−3, μl = 1.137 × 10−3 kg ms−1, μg = 1.78 ×
10−5 kg ms−1 with g = 9.8 m s−2, and σ = 0.0728 kg s−2. The
key dimensionless parameters used in this study include: Mor-
ton number Mo = gv4ρ3

l /σ 3, Eötvös number Eo = ρlgD2/σ ,
density ratio ρl/ρg and viscosity ratio μl/μg . To validate the
accuracy of the numerical method employed in the present
study, a grid refinement test is performed first. The results are
presented in Appendix A.
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3.1. Dynamics of bubble motion and deformation

The time evolution of bubble shapes is shown in Fig. 1(a).
The bubble, exerted by buoyancy force, rises rapidly after its
release. This ascension process proceeds with the bubble de-
forming from the initial spherical shape to the final bullet-like
shape. The bottom of the bubble moves rapidly upward and
develops into a concave shape. It then rebounds downward im-
mediately into a convex shape. This up-and-down oscillatory
movement of the bubble bottom continues as the bubble rises
with decreasing amplitude. The top of the bubble, on the con-
trary, remains a spherical cap shape with very little deformation
as it ascends.

The velocity field at a time instant is presented in Fig. 1(b)
with the corresponding streamline plot shown on the left. The
magnified views of several regions around the bubble are pre-
sented in Fig. 2. The axial velocity along the center axis of
the tube decreases rapidly upward away from the bubble tip
and is negligible half a diameter away from the bubble nose

Fig. 1. (a) Time dependent deformation sequence of a single air bubble in a
narrow tube. (b) Velocity vector field and streamline plot at one time instant.
(Fig. 2(a)). The radial velocity increases radially away from
the tip of the bubble nose followed by the entrance of the
fluid into the falling liquid film near the tube wall. Across the

Fig. 2. Velocity field (magnified views): (a) top region; (b) side region; (c) wake
region.
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Fig. 3. The axial velocity versus time at the nose and bottom of the bubble.

bubble interface, the flow reverses from upward inside the bub-
ble to downward in the liquid (Fig. 2(b)). In the wake region
of the bubble, the downward flow in the liquid film near the
tube wall mixes with the liquid slug induced by the gas bub-
ble at approximately two diameters below the bottom of the
bubble (Fig. 2(c)). As a result, a toroidal vortex is generated,
followed immediately by a much weaker counter-rotating vor-
tex (Fig. 1(b)). It should be mentioned that the observations of
the flow structure in the present numerical study are in good
agreement with the findings reported in previous experimental
studies on slug flows [4–6].

Fig. 3 shows the axial velocity versus time plot at the top and
bottom centers of the bubble. The velocity at the bottom under-
goes significant oscillations initially and subsides into a steady
state gradually. These oscillations at the bottom appear to have
no influence on the behavior of the bubble nose, where the ve-
locity rapidly accelerates and immediately reaches a constant
value of around 0.1735 mm ms−1. This is in excellent agree-
ment with the terminal velocity of 0.1732 mm ms−1 obtained by
the correlation UT = 0.35

√
gD reported in the literature [2,5].

The pressure contours and the pressure distribution along
the axial direction are shown in Figs. 4(a) and (b) respectively.
The top of the tube is open to the atmosphere, and thus an open
boundary condition is applied there with the atmospheric pres-
sure taken as zero. As shown in Fig. 4(a), the pressure increases
gradually with depth from top to bottom, except in the gas phase
where it stays constant. Fig. 4(b) shows the axial pressure dis-
tribution at three radial positions. The fluid motion is relatively
weak in the region from the top of the tube to the nose of the
bubble with an almost linear increase in pressure. In the region
from the top to bottom of the bubble, the pressure maintains
a constant value inside the bubble and changes non-linearly
in the liquid film. In the wake region of the bubble, the pres-
sure changes non-linearly in the first recirculation zone beyond
which the pressure varies approximately linearly again when
the flow diminishes. It is also shown that the pressure variation
in the radial direction is very small except near the bubble in-
Fig. 4. (a) Pressure contour plot. (b) Pressure distribution along the centerline
of the tube at various radial positions.

Fig. 5. Power spectra for the oscillations of the bottom velocity.

terface where a pressure jump induced by the surface tension
exists.

3.2. Bubble oscillations

As discussed previously, during the acceleration process,
significant bubble deformation occurs. This is characterized by
oscillatory motion at the bottom with a relatively stable spheri-
cal cap shape maintained at the nose (see Fig. 1(a)). This is also
manifested by the velocity fluctuations at the bottom as shown
in Fig. 3. The velocity at the nose quickly reaches the terminal
velocity and remains constant, while the velocity at the bot-
tom undergoes severe oscillations. The Fourier transforms of
the bottom velocity are obtained to correlate and analyze the
oscillation characteristics. Power spectra of the bubble bottom
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Fig. 6. Bubble rise velocity at the nose and bottom for different cases: (a) high viscosity (10v); (b) low viscosity (0.1v); (c) high surface tension (2.0σ ); (d) low
surface tension (0.5σ ).
velocity oscillations are given in Fig. 5. Note that the dominant
frequency of the bottom velocity oscillations is approximately
12.7 Hz.

It is of interest to compare the numerical results of the
present study with theoretical calculations in order to validate
the accuracy of the numerical simulation. In a recent study [8]
of the time-dependent characteristics of the motion of an elon-
gated bubble in a vertical pipe, the bubble bottom is treated as
a circular liquid membrane modeled by potential flow theory.
The velocity potential, Φ , is governed by the Laplace equation:

∇2Φ = 0 (17)

with a solution given by:

Φ(r, θ,Y, t) = AsJs(kr) cos(sθ)ekz+i(ωt+ε) (18)
where As is the arbitrary amplitude, Js the Bessel function of
the first kind of order s, k the wave number, ω the angular fre-
quency, and ε the arbitrary phase angle. The derivation follows
that of Lamb [18] where a more detailed discussion of the so-
lution can be found. The wave number k is determined by the
condition that the radial velocity at the rim of the bubble bottom
is zero, i.e.,

∂Φ

∂r

∣∣∣∣
r=R

= 0 (19)

Due to the symmetrical oscillation character of the bubble
bottom imposed in the present numerical simulation, s is taken
as zero, and Eq. (19) becomes:

J ′
0(kr)|r=R = 0 (20)
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The oscillation frequency, f (= ω
2π

), can then be obtained by
substituting k into the gravity-capillary wave dispersion relation
below:

ω = gk + σ

ρ
k3 (21)

For a bubble bottom radius of 10.6 mm, the oscillation fre-
quency corresponding to the lowest mode is 13.3 Hz. This is
in good agreement with the value of 12.7 Hz obtained in the
present numerical simulation. In the experimental investigation
conducted by Polonsky et al. [8], anti-symmetric oscillations
of the bubble bottom were observed for a long gas bubble ris-
ing in a tube. These anti-symmetric oscillations were sustained
throughout the whole duration of the bubble rising process.
It should be noted that, for bubbles with small L/D (length
to diameter) values, oscillations at the bubble bottom are very
weak with negligible amplitudes and dominant frequencies (see
Figs. 3, 8 and 9 of [8]). The bubbles considered in this study are
very short in length with an L/D value approximately 0.8 at
steady state as shown in Fig. 1. Therefore, the anti-symmetric
oscillations can be neglected when the bubble reaches steady
state.

3.3. Effects of fluid parameters on the oscillations

A number of cases for different fluid parameters are inves-
tigated to identify the factors controlling the oscillatory behav-
iors of bubble velocity and shape. Figs. 6(a) and (b) show the
velocity versus time plot for cases with different liquid vis-
cosities. The liquid viscosity values used are 10.0 times that
of water in case (a), and 0.1 times in case (b). It can be seen
that an increase in liquid viscosity leads to a decrease in oscil-
lation amplitude and overall duration with larger amplitude and
longer overall duration attained by reduction in liquid viscosity.
This implies that liquid viscosity has a damping effect on the
oscillations, as expected. However, as shown in Fig. 7(a), the
oscillation frequency is relatively unaffected by the variation in
liquid viscosity. The dominant frequencies for all three cases
with different viscosities are almost identical. The gas viscos-
ity plays a negligible role in the bubble motion and is therefore
ignored.

Figs. 6(c) and (d) show rise velocity versus time plots for
cases with different surface tension coefficients. The surface
tension coefficient values considered are twice and half that of
water and air. With larger surface tension force, the oscillations
become stronger in that both the amplitude and the frequency
are increased. With decreased surface tension force, both the
amplitude and frequency are decreased. Power spectra of bot-
tom velocity oscillations with different surface tension coeffi-
cients are shown in Fig. 7(b). It can be seen that the dominant
frequency increases with increase in surface tension.

It should be noted that for all the cases discussed above,
Mo < 2.56 × 10−7 and Eo > 42.0. According to the Eo–Re di-
agram (Fig. 2.5 of Clift et al. [1]), the bubble will take on a
“spherical-cap” shape in an unbounded liquid under these con-
ditions. However, the bubble considered in the current study
is confined in a narrow tube. As shown in Fig. 8, the bubble
Fig. 7. Spectra of bubble bottom velocity oscillations: (a) viscosity effect;
(b) surface tension effect.

nose takes on a slightly prolate spheroid shape due to the ef-
fect of the tube wall. Meanwhile, the bubble nose shape does
not vary much between the different cases, although the bottom
shape changes significantly. Moreover, velocity oscillations oc-
cur only at the bottom of the bubble, while velocity at the nose
maintains a nearly constant value during bubble rise (Figs. 6(a)–
(d)). It appears that the behavior of the bubble nose is indepen-
dent of the parameters studied. However, a close examination
of Fig. 6(c) reveals that the nose velocity curve is slightly wavy,
which suggests that nose oscillations might occur if surface ten-
sion is sufficiently large. This needs further investigation in the
future work.

4. Conclusions

The dynamics of a single gas bubble rising in a narrow
vertical tube have been studied via a numerical method. The
velocity field as well as the pressure distribution have been
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Fig. 8. Time evolution of the bubble shapes for different cases: (a) high viscos-
ity; (b) low viscosity; (c) high surface tension; (d) low surface tension.

investigated and analyzed; the results obtained in the present
study are in close agreement with experimental results reported
in the literature. Special attention is paid to bubble oscillations
at Mo < 2.56 × 10−7 and Eo > 42.0. It has been found that
the bubble nose retains a relative stable shape while significant
oscillations occur at the bubble bottom as it rises through the
liquid from the static state. The parametric study shows that the
liquid viscosity plays an important role in damping the oscilla-
tions without altering the oscillation frequency; while the sur-
face tension significantly affects both the oscillation frequency
and the amplitudes.

Appendix A. Grid refinement study

Computations have been conducted with three different
mesh sizes for the grid sensitivity test. The magnified view of
the bubble shapes at the initial stage with severe deformations
is shown in Fig. 9. The results obtained from the three differ-
ent grids are very close, which indicates the grid convergence
is achieved.
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